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Abstract. The radiation of a small system of harmonic oscillators is analysed. The exact 
solution of the problem in the dipole and rotating wave approximation is discussed. It is 
shown that only vibrations of the centre of charge are radiatively damped and that their 
damping constant is N times larger than for a single oscillator. Due to the collective emission, 
broadening and shift of the line, dependent on the number of oscillators, also occur. 

1. Introduction 

We consider the problem of the spontaneous emission of electromagnetic radiation by 
the system composed of N harmonic oscillators, oscillating with the frequency coo and 
occupying a volume of small dimensions in comparison with the wavelength. Our 
approach is not based on perturbation theory. Simplifications of the hamiltonian lead 
to a solvable model. In the model a wide spectrum of radiation is taken into account. 
This allows for a direct description of the irreversible emission of radiation by the system. 

A similar model has been considered by many authors. Louise11 (1964) used it for 
the description of the mode damping inside resonant cavities. It was discussed by 
Schwabl and Thirring (1964) as a model of the laser. Some aspects of the emission of 
radiation by such a system were discussed by Agarwal(l971). In this paper we want to 
give a more complete discussion of the collective features of the emission process which 
appear in the damping of the source and in the spectral and time-space shape of the 
radiation. It is also shown that in the frequently used approximation of neglecting the 
A‘ interaction there are possible vibrations of the centre of charge of the system sur- 
rounded by its own radiation field, which do not decay. This effect disappears when the 
A’ term is taken into account. 

The model considered seems to be somewhat unrealistic. However, we hope that it 
allows for a better understanding of the radiation process. The model can be easily 
adapted to describe the cyclotron radiation emitted by a system of non-relativistic 
electrons moving in a magnetic field. 

2. Specification of the hamiltonian 

The hamiltonian of the N harmonic oscillators coupled to the electromagnetic field 
has the form : 
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where xi denotes the displacement of the ith charge from its equilibrium position, which 
is assumed to be fixed. The elastic force acting on each charge is treated as though 
external. We neglect the electrostatic interaction between the oscillators. The vector 
potential of the electromagnetic field is represented by a plane wave expansion with a 
continuous spectrum of the wavevectors and with a transverse field only : 

where e,, are polarization vectors. 

tions : 
The creation and annihilation operators a:, and akp satisfy the commutation rela- 

(3) 

I t  will be convenient to describe also the oscillators by means of the creation and annihi- 
lation operators of their excitations : 

[a,,, a;"] = 6,, 63(k -PL Eakp,  apvl = 0 = [a:,, 

We assume that the dimensions of the system are small in comparison with the wave- 
length of the emitted radiation & = 2nc/w0. Therefore, the interaction is taken into 
account only in the dipole approximation, ie we put eikr = 1 in terms giving the coupling 
between the charges and the radiation. In the first part we have neglected terms coming 
from A' in the interaction. Corrections caused by these terms are discussed in $ 6 .  
We also make the rotating wave approximation, ie we neglect terms Btu:, and Biuk, in 
the interaction. This is justified when we are only interested in the spectrum of the field 
near the resonant frequency. 

With these approximations the hamiltonian (1) takes the form (w = kc): 
N 

The form factor g(k) should be equal to k -  l i 2 ,  but in that case the model becomes 
divergent. This divergence has an unphysical meaning and is connected with the 
invalidity of our dipole approximation for very large vectors Ik( appearing because of the 
k integration. It can be removed by a renormalization procedure or by an appropriate 
cut-off of the integral. Therefore, we have introduced a form factor g(k) vanishing 
sufficiently fast for large Ikl. Sometimes we use a function g(k) with a sharp cut-off at 
k = k,,,, ie 

The natural parameter for the cut-off is kmaX = 2n/d0, where do denotes the dimension 
of the radiative system. 

Because of the form of the hamiltonian ( 5 )  it is convenient as in Rzaiewski and 
Zakowicz (1971) and Katriel and Adams (1970), to change the variables describing the 
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system of oscillators. We perform a linear transformation of variables : 
N 

6, = 1 UkiBi, 
i =  I 

where uik is a unitary matrix such that 

l N  
b1 = - 1 Bi E b. 

J N i = ,  
The hamiltonian of the system in the new variables is obtained in the form: 

H = H,+H,,  
where 

h’ 

H ,  = hwo 1 btbi,  
i = 2  

H ,  = oohbtb + h d3kwa:,ak,+ ihA 1 d3kek,g(k)(ba:, - btuk,) I ,I 
and 

i. = -(-) e woN 
2 7 ~  2mc 

The hamiltonian H ,  corresponds to those degrees of freedom which are not coupled 
to the field. The excitation of that part, within our approximation, does not influence 
the radiation of the system. It causes free and undamped oscillations with the frequency 
coo. The system is coupled to  the field only via the first new variable, ie 6, which corre- 
sponds to the vibration of the centre of charge (or mass), which is denoted in the following 
as ccv. This part of the system coupled with the radiation has been separated to form the 
hamiltonian H,.  In this way we have reduced the investigation of the radiation by the 
composite system to the analysis of the radiation by one oscillator. The composite 
character of the system under consideration is reflected only in the dependence of the 
coupling constant A on the number of oscillators, ie A - N ” ’ .  

The case when the whole excitation energy of the system excites only ccv, corre- 
sponds to the super-radiant state of the system (Rzaiewski and Zakowicz 1971). When 
also non-radiative degrees of freedom are excited, one usually speaks of a system with 
trapped radiation. 

Now we are going to solve the radiation emission problem, solving the Heisenberg 
equation of motion for the operators U:, and bt. 

3. Heisenberg equations for fields and oscillators 

The hamiltonian (9) leads to the following equations of motion, in the Heisenberg 
picture, for the operators bt and a:, : 

d 
dt 
-bt = h o b t  
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The solution of these equations, which can be found by the method of Laplace trans- 
formation, will be written in the following form : 

bt(t) = F(t)bt(0)-A d3ke,,g(k)G(k, t)aL,(O) 
c 

where the functions F ( t ) ,  G(k,  t )  and J(k, p ,  t) are given by the inverse Laplace integrals, 

and 

k2(g(k))2 h(z) = z-iwo+-i.2 dk-. Jo z-ikc 

The contour r is parallel to the imaginary axis and lies to the right of all singularities of 
the integrands. As will be seen later, this contour can be chosen to the right of the 
imaginary axis. Sometimes we shall use the function h(z) corresponding to the form 
factor g(k) given by (6),  in which case 

8n j.2 ) (z-if",,,..) 
h(z) = z--1 wo-- -k,,,,, +- -2z1n .( 3 c 

In the Heisenberg picture, one can give the following interpretation of the structure of 
the solutions (14) and (15). The first term of (14) corresponds to the damping of the 
initial ccv excitation due to the emission of radiation by the system. The second term 
describes a variation of the ccv excitation in the case when, initially, the electromagnetic 
field is excited. For the field operators given by (15), the first term contributes to a free 
propagation of the initial field, the second term gives the field emitted by the excited 
system, and the last is connected with the interaction of photons in the presence of 
sources. In the ordinary approach, this term corresponds to the scattered field. 

In order to give a physical discussion of the behaviour of the oscillators and radiation 
field, we have to find the functions F( t ) ,  G(k, t )  and J ( k ,  p ,  t) in a more applicable form. 
These functions can be evaluated by the theorem of residues. However, one needs to be a 
little careful because the function h(z), which appears in the integrals, is multivalued with 
branch points at  z = 0 and z = cc (or z = ikmaxc if one uses (6)).  Therefore, not only the 
poles but also the contour integrals along the cut contribute to F( t ) ,  G(k,  t )  and J(k, p ,  t ) .  
The most convenient choice of the cut is along the negative part of the real axis (figure 1). 
The function h(z) in the second quadrant is given by the analytic continuation of that in 
the first quadrant. If we use the function h(z) given by (20), we should also introduce a 
second cut between the points ikmaxc and -CO.  However, when wo << k,,,,,c, which is the 
case, this second cut causes very small corrections and can therefore be neglected. In the 
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Figure 1.  Contour of integration with cut along negative part of the real axis. 

z plane, with a cut as described above, one can easily prove that zeros of h(z)  can only lie 
either in the second quadrant or on the negative part of the imaginary axis. Only zeros 
lying in the second quadrant have a physical meaning. However, it is also interesting to 
find the second type of zeros and to recognize their consequences and origins. 

On the negative part of the imaginary axis Re h(iy) = 0, and the zeros of h(z) on this 
axis are determined by the solutions of the equation Im h(iy) = 0 which, written explicitly, 
has the form 

y < 0. 
87c k’(g(k))’ 

y = wo+--l’Jo dk-, 
3 y-kc 

This equation has a unique solution if 
1 

where 

d = (1; dkk(g(k))’) - ’ 
This condition can be satisfied if the number of oscillators is sufficiently large. As can be 
seen from our further discussion, the zero of h(z)  lying on the imaginary axis would 
correspond to the incomplete damping of initially excited ccv. In other words, there 
would be possible bound states of the system with excited ccv surrounded by an excited 
radiation field. However, when the condition for this effect is fulfilled, it is not justifiable 
to neglect the A’ term in the interaction. This term may only be neglected for systems 
which are not coupled too strongly with the radiation and then such bound states do not 
appear. 

Remaining in our approximation, ie using the hamiltonian (9), we restrict further 
discussion to the case of weak coupling, I << c, for which the bound states mentioned 
above do not appear. Asymptotically, for t -+ m, one must take into account contribu- 
tions to the functions F(t) ,  G(k, t )  and J(k, p ,  t )  arising from the pole of (h(z ) ) -  ’ nearest 
to the imaginary axis. Treating -l/c as a small parameter, one finds that the solution, 
z = -y+iR, of the equation h(z) = 0, when h(z) is given by (20), is approximately 
given by 
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We can now evaluate and express the integral (16) in the following form: 

F ( t )  = a exp( - y t  + iRt) + C(t), 

a = resz(h(z))-'l,=-,+i, 'v 1 

(25) 

where 

and 

1 C(t) = -q0 dx exf ( ~ _ _ _ _  
2x1 -11 h(x -io) h(x +io) 

Using an expansion of h(x & io) for small values of x < 0, one can estimate the function 
C(t) for large values of t ,  obtaining 

We see that F ( t )  -, 0 when t -, cc, which corresponds to a complete damping of the ccv 
excitation. 

One can also easily find the functions G(k,  t )  and J ( k ,  p ,  t).  For these functions, the 
terms due to the poles and cuts of (h(z))- are similar to those which appear in the func- 
tion F(t ) .  They dewibe  the excitation of the system and the form of the field at a time 
just after the initial moment. These terms vanish in the limit t -+ oc. In addition to 
these, there are also terms coming from the poles lying on the imaginary axis. These 
terms are preserved in the limit t -+ 00 and describe the finally emitted and scattered 
radiation field of the system. They are also responsible for the conservation of the equal- 
time commutators for t -, 00, eg [b(t), b t ( t ) ]  = 1, which can be checked by using the 
integral given in the appendix. Being most interested in the final field emitted by the 
system, we give only the explicit formula for the corresponding term : 

4. Radiative damping 

In the present paper we are interested in the spontaneous radiation processes so we 
assume that the initial state of the system corresponds to the excited oscillators and the 
field in the vacuum state, ie 

14) = I+o>IRph). (29) 

For the state 14) we shall now discuss the damping of the ccv which, as we have men- 
tioned already, is the only degree of freedom radiatively damped. The dependence of the 
ccv excitation on time can be described by : 
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where, cf (24), 

We see that, in addition to the exponential damping of the ccv excitation, there is also 
a term describing non-exponential damping. This term dominates in the later stage of 
the evolution of the system. I t  becomes greater than the exponential term when 

Because oo >> y, this happens after several relaxation periods and then the probability 
of ccv being in the ground state is almost unity, which means that the effect of non- 
exponential damping is very weak ; usually it is neglected. There are also some attempts 
to avoid this non-exponential damping by referring to certain types of measurement 
procedures (cf, for example, Fonda er a1 1973). However, in our opinion, one cannot 
rule out the possibility of non-exponential decay in general. For experimentally 
interesting times, the damping is described by the exponential term. The formula for 
this part of the damping of ccv was given in Agarwal(l971) and in a classical treatment 
in Fajn and Khanin (1969). I t  is worthwhile to point out that the damping parameter y 
is N times larger than for a single oscillator and, therefore, the system loses its radiative 
energy faster than an isolated oscillator. This effect is due to the collective character of 
the emission. 

5. Spectral and space-time pattern of radiation 

Now we shall come to the discussion of the properties of the emitted radiation, all of 
which can be expressed by the operators al,(t) given by (15). We are interested here in 
the asymptotic form of the field. In the limit t + cc we can drop the damping part of 
the expression (1 5) (both exponential and non-exponential). Of the remaining parts we 
are interested only in that which corresponds to the emitted radiation. Using (28) it 
can be written in the form : 

The spectral and angular distributions of the emitted radiation, which can be deduced 
from the mean value of the photon number density operator corresponding to the 
photons of a given wavevector k and polarization p, 

N k p ( f )  = aiFd(f)arj( t ) ,  (34) 
is given by 

The function S(k, p, t )  can be written in the form : 

S(k, p, t )  = s(w)B,,(h (36) 

where B,,(k) describes the angular distribution of photons and also their flux intensity, 
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while s(w) gives the pure spectral distribution of the radiation. The function s(w) is 
chosen in the form 

8 n  A' k2(g(k))' 
$0) = - - ~ 

3 c Ih(iw)12 ' ( 3 7 )  

This function is normalized, J,"dws(w) = 1, as can be shown using the integral given 
in the appendix. When the form factor g ( k )  is given by (6) ,  which corresponds to the 
function h(z) being given by (20), the spectral distribution of the radiation is given by the 
formula (0 < w < w ,,,) : 

For small values of the coupling constant, E. << c, this function has approximately a 
lorentzian shape : 

We point out that the width of the spectral line and the position of its maximum depends 
on the number of radiating oscillators N .  The shift of the central frequency and the line 
width are proportional to this number. Notice also that these effects are independent of 
the form of the initial excitation. Both effects exhibit, in the best way, the cooperative 
features of the emitted radiation. 

Our spectral distribution was related to the spectral density of the number of 
photons. Multiplying it by h o ,  one gets the spectral distribution for the energy. 

Using the integral given in the appendix, one can show that the energy of the emitted 
photons is exactly equal to the energy of the initial excitation of the system, ie 

Erad(t) = h 1 d3kwaiFd(t)u;:(t) = hoobt(0)b(O). 
P 

Now we come to the description of the space-time properties of the emitted radiation. 
Putting uipd(t),  which is given by (33), into ( 2 ) ,  one could get the vector potential of the 
emitted radiation as a function of the space and time variables. However, some caution 
is needed. When deriving alFd(t)  we introduced the form factor g ( k )  instead of k- l/' 
to avoid divergences. We have previously neglected the photons of very high frequency 
and so we cannot use our formula for such photons now. The approximate vector 
potential of the radiation field is given by : 

1 ,. 
Arad(y, t )  = &, / (hc )  C J d3k ekPg(k)(aipd(t) eikr+ U;;'," eWikr).  

P 

Introducing u:Fd(t), given by (33) ,  into this expression and performing the integration 
over the angular part, one finds Arad in the wave zone ( r  >> Ar), 

Because of the function sin(kr), this expression represents incoming and outgoing 
spherical waves. Asymptotically, for large rand t ,  the incoming wave does not contribute 
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to the integral, and Arad can be represented in the form 

- &)( f ( r  - ct)b +(O) - f *(r  - ct)b(O)), 

where 

(43) 

This integral can be understood as the contour integral along the positive part of the 
real axis (contour r' in figure 2) of the complex k plane. 

I- 
Figure 2. Contour of integration r' 

To estimate the integral (44) it is convenient to deform the contour in such a way 
that the factor exp( - ikx) in the integrand becomes damped. Thus, if x > 0 the contour 
r' is replaced by I-'' (figure 3). The integral along the arc y" tends to zero when its radius 
goes to infinity and the function h(ikc) has no zeros in the IV quadrant of the k plane. 
For x < 0 one changes the contour into r"' (figure 4), but in this case it is necessary to 
take into account contributions coming from the poles z j  of h(ikc)-' lying in the I 
quadrant. One finds that 

In particular, one gets f ( x )  K (wax)- when 1x1 + a. 
The fact that f ( x )  # 0 for x > 0 is very unsatisfactory as it means that the field 

appears at a point of distance r from the system before the time t = r / c ,  which is in 

A A 

Figure 3. Contour of integration r". Figure 4. Contour of integration I-"'. 
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contradiction with basic physical principles. There are several reasons which may cause 
this weakness in our treatment. Firstly, the description of our system by the hamil- 
tonian (2) is non-relativistic. Secondly, we have used the dipole approximation and 
removed the field components with very large wavevectors Ikl. Thirdly, it may also 
happen that our initial conditions, ie the field in the ground state and the source in the 
excited state, are inconsistent with a relativistic description. These difficulties would 
not appear if the lower limit of the integral has been taken as - CO. However, this pro- 
cedure is not justified. 

The contributions to the integrals (45) and (46) from the integration along the 
imaginary axis have no sinusoidal wave character. Only the poles of (h(izc))- ' lying in 
the first quadrant contribute to a sinusoidal, damped wave train. Taking into account 
only the pole nearest to the real axis, one gets, for small coupling A << c, the quasi- 
monochromatic part of the signal: 

where, cf ( 2 3 ) ,  

1 e2Nw,,, 

The angular distribution of the radiation is characteristic of dipole radiation. 

is 
The energy of the radiation corresponding to (47), neglecting terms of order O ( ( ~ / C ) ~ )  

dr r2E(Sf)rad(r, t)Es-)rad(r, t )  Y hw,bt(0)b(O) (48) 2n 

where E"' and E - '  denote those parts of the field which correspond to b'(0) and b(O), 
respectively. 

The energy Eyd is thus equal to the total energy (40) of the field. This shows that the 
parts of the field which are related to the integrals along r" and r"' do not carry energy, 
at least to our accuracy. This is some sort of justification for neglecting those parts of 
the signal which do not fulfil the causality condition. 

6. Radiation in the presence of the A* term 

Until now, we have been neglecting part of the interaction of (e2/2mc2)Er= A 2  type, 
which is present in the initial hamiltonian (1). In this section we are going to comment on 
the consequences of this term. 

A correction to the hamiltonian ( 5 )  (11) coming from the A 2  term, taken in the 
rotating wave and the dipole approximations, has the form : 
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This term changes equation (13) for the operator ai,(t) into: 

The equation for bt(t)  is the same as before. The system is still exactly solvable. 

modified according to the formulae : 
The solution remains in the form (14), (15) with functions F( t ) ,  G(k, t )  and J(k, p ,  t )  

e'' dz 

err 
dz 

1 
G(k' ') = % Jr (2-ikc)H(z) 

1 + i2z/00 
( z  - ikc)(z - ipc)H(z) 

e'' dz (53) 

where 

H ( z )  = z-iwo-i2 1 +- y(z). ( 2:) 
As was mentioned in 9 3, without the A' term, the function h(z)  can have the zero on the 
negative part of the imaginary axis for sufficiently large coupling constant. Hence the 
bound state of the radiation and sources is possible. 

One can easily verify that H(z) ,  the counterpart of h(z), has no zero on the imaginary 
axis for any value of the coupling constant A. This means that the bound state disappears. 

In the case of weak coupling, 1 << c, zeros of the function H ( z )  are still given by (23), 
(24). This means that the A 2  term does not affect the shape of the emitted line and the 
radiative damping constant in the lowest order of the coupling. 

7. Final remarks 

In our treatment we have neglected the motion of the oscillators, their collisions and 
electrostatic interactions. These processes are very important for the properties of 
radiation, if the emission is a slow process. However, as we have pointed out, due to the 
cooperation of the oscillators, the emission becomes very fast. For a system composed 
of a sufficiently large number of oscillators one can, in fact, disregard these slow processes 
resulting from motion and electrostatic interaction. They certainly have some influence, 
together with non-dipole radiation, in the later states of the evolution when, in our 
approximation, the system reaches the non-radiative state or, as is sometimes said, 
traps the radiation. The discussion given in this paper concerns the initial stage of the 
system evolution when the radiation is not disturbed by randomizing processes. 
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Appendix 

In this paper we use the integrals 

Introducing the cut of the k plane along the positive part of the imaginary axis, we have 
the following relations : 

8n A 2  1 
_ -  k2(g(k))' = -@(io +O)- h(iw - 0)) 3 c  21T 

lh(iw)I2 = h(iw+O)h*(iw+O) = -h(iw+O)h(iw-O). 04.3) 
The integral (A. 1) can be represented by the contour integral 

where the contour y is shown in figure 5. With the cut as described above, the function 
h(z) has no zeros in the z plane, cf (22), and this is the situation considered in this paper. 
Therefore, the integrand is an analytic function and the contour of integration y can 
be deformed into y' ,  cf figure 5. The integral (A.4) can then be evaluated by expanding 
the integrand in powers of z-".  In this way one finds 

l o  = 1, I ,  = 0 0 .  64.5) 

t 

Figure 5. Contour of integration y ,  
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